Solidification–stabilization of organic and inorganic contaminants using portland cement: a literature review
نویسندگان
چکیده
The treatment of hazardous wastes using cement-based solidification–stabilization (S–S) is of increasing importance as an option for remediating contaminated sites. Indeed, among the various treatment techniques, S–S is one of the most widely used methods for treating inorganic wastes. To enhance the application of S–S and to further develop this technology for site remediation, particularly for organic contaminants, it is important to have a better understanding of the mechanisms involved in the process. The primary objective of this review is to survey the current knowledge in this subject, focusing on (i) cement chemistry, (ii) the effects of inorganic (heavy metals) and organic compounds on cement hydration, and (iii) the mechanisms of immobilization of different organic and inorganic compounds. For heavy metals, cement-based S–S technology has been shown to be effective in immobilizing the contaminants, even without any additives. In applying cement-based S–S for treating organic contaminants, the use of adsorbents such as organophilic clay and activated carbon, either as a pretreatment or as additives in the cement mix, can improve contaminant immobilization in the solidified–stabilized wastes. The concept of degradative solidification–stabilization, which combines chemical degradation with conventional solidification–stabilization, seems promising, although further study is required to assess its technical and economic feasibility.
منابع مشابه
Solidification/Stabilization of Lead Contaminated Soil Using Magnesia Phosphate cement and Ordinary Portland cement
Background and objectives: Solidification/stabilization is an effective technique for reducing the leachability of contaminants in soils. Magnesia phosphate cement and ordinary Portland cement can be used to remediate soils contaminated. In this study, the performance of the solidified/stabilized soil was compared for mixtures composed of magnesia phosphate and ordinary Portland cement. Materia...
متن کاملModelling the effects of waste components on cement hydration.
Ordinary Portland Cement (OPC) is often used for the solidification/stabilization (S/S) of waste containing heavy metals and salts. These waste components will precipitate in the form of insoluble compounds on to unreacted cement clinker grains preventing further hydration. In this study the long term effects of the presence of contaminants in solidified waste is examined by numerically simulat...
متن کاملThree-year performance of in-situ solidified/stabilised soil using novel MgO-bearing binders.
A new group of MgO-bearing binders has been developed recently which showed improved sustainability and technical performance compared to Portland cement (PC). However, the application of these MgO-bearing binders in the Solidification/Stabilisation (S/S) techniques is very limited. This study investigates the three-year performance of a highly contaminated soil treated by in-situ S/S using MgO...
متن کاملMechanical Properties of Low Plasticity Clay Soil Stabilized with Iron Ore Mine Tailing and Portland Cement
Due to economical and environmental issues, utilization of mineral wastes, e.g. iron ore mine tailing (IOMT), as road materials can be recommended as a sustainable alternative. In the present study, mechanical properties, as well as resistance to freezing and thawing cycles (F-T) of low plasticity clay soil stabilized with different percentages of Portland cement (0, 6, 9, 12 and 15%) and diffe...
متن کاملTesting Stabilization/solidification Processes for Mixed Waste
Stabilization/Solidification technologies reduce the mobility of hazardous and radioactive contaminants in the environment through both physical and chemical processes. Four stabilization/solidification (S/S) processes were used to solidify three sample matrices contaminated with arsenic, chromium (VI), lead, cesium and strontium. These sample matrices were Idaho National Engineering and Enviro...
متن کامل